Block-Matching Twitter Data for Traffic Event Location
نویسندگان
چکیده
منابع مشابه
DDoS Event Forecasting using Twitter Data
Distributed Denial of Service (DDoS) attacks have been significant threats to the Internet. Traditional research in cyber security focuses on detecting emerging DDoS attacks by tracing network package flow. A characteristic of DDoS defense is that rescue time is limited since the launch of attack. More resilient detection and defence models are typically more costly. We aim at predicting the li...
متن کاملA Block-Grouping Method for Image Denoising by Block Matching and 3-D Transform Filtering
Image denoising by block matching and threedimensionaltransform filtering (BM3D) is a two steps state-ofthe-art algorithm that uses the redundancy of similar blocks innoisy image for removing noise. Similar blocks which can havesome overlap are found by a block matching method and groupedto make 3-D blocks for 3-D transform filtering. In this paper wepropose a new block grouping algorithm in th...
متن کاملEvaluation Measures for Event Detection Techniques on Twitter Data Streams
Twitter’s popularity as a source of up-to-date news and information is constantly increasing. In response to this trend, numerous event detection techniques have been proposed to cope with the rate and volume of social media data streams. Although most of these works conduct some evaluation of the proposed technique, a comparative study is often omitted. In this paper, we present a series of me...
متن کاملfault location in power distribution networks using matching algorithm
چکیده رساله/پایان نامه : تاکنون روشهای متعددی در ارتباط با مکان یابی خطا در شبکه انتقال ارائه شده است. استفاده مستقیم از این روشها در شبکه توزیع به دلایلی همچون وجود انشعابهای متعدد، غیر یکنواختی فیدرها (خطوط کابلی، خطوط هوایی، سطح مقطع متفاوت انشعاب ها و تنه اصلی فیدر)، نامتعادلی (عدم جابجا شدگی خطوط، بارهای تکفاز و سه فاز)، ثابت نبودن بار و اندازه گیری مقادیر ولتاژ و جریان فقط در ابتدای...
Identifying Twitter Location Mentions
This paper describes our system in the ALTA shared task 2014. The task is to identify location mentions in Twitter messages, such as place names and point-ofinterests (POIs). We formulated the task as a sequential labelling problem, and explored various features on top of a conditional random field (CRF) classifier. The system achieved 0.726 mean-F measure on the held-out evaluation data. We di...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: American Journal of Engineering and Applied Sciences
سال: 2017
ISSN: 1941-7020
DOI: 10.3844/ajeassp.2017.348.352